Nonlinear Regression of the Transfer Characteristics of Electronic Devices: A Neuro Computing Approach
نویسنده
چکیده
In this paper, it is shown that Multilayer perceptron Neural Network can elegantly perform nonlinear regression of transfer characteristic of electronic devices. After rigorous computer simulations authors develop the optimal MLP NN models, which elegantly perform such a nonlinear regression. Results show that the proposed optimal MLP NN models have optimal values of MSE (mean square error), r (correlation coefficient) when it is validated on the and transistor nonlinearity is observed in the transfer characteristics. The datasets are obtained by performing experiments on a typical p-n junction diode 1N4007, transistor BC107 and Field Effect transistor (FET) BFW10. The number of readings is treated as samples. Optimal MLP NN (Multilayer Perceptron Neural Network) is developed for regression of electronic devices characteristics. Other NN configuration Jordan Elman Neural Network has also been considered for this regression. visual inspection of the plots that the outputs of the estimated MLP NN models closely follow the real one. It is seen that the performance of the proposed MLP NN models clearly outperforms the best Jordan Elman NN models. The simple NN models such as the MLP NN can be employed to solve such a nonlinear regression problem, is a major contribution of this research work.
منابع مشابه
Controlling structures by inverse adaptive neuro fuzzy inference system and MR dampers
To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy Inference Systems and Neural Networks are combined in this study. The control scheme consists of an ANFIS inverse model of the structure to assess the control force. Considering existing ANFIS controllers, which require a second controller to generate training data, the authors’ approach does not need anot...
متن کاملAn Effective Task Scheduling Framework for Cloud Computing using NSGA-II
Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...
متن کاملThe CFD Provides Data for Adaptive Neuro-Fuzzy to Model the Heat Transfer in Flat and Discontinuous Fins
In the present study, Adaptive Neuro–Fuzzy Inference System (ANFIS) approach was applied for predicting the heat transfer and air flow pressure drop on flat and discontinuous fins. The heat transfer and friction characteristics were experimentally investigated in four flat and discontinuous fins with different geometric parameters including; fin length (r), fin interruption (s), fin pitch (p), ...
متن کاملNeuro-fuzzy Sliding Mode Controller Based on a Brushless Doubly Fed Induction Generator
The combination of neural networks and fuzzy controllers is considered as the most efficient approach for different functions approximation, and indicates their ability to control nonlinear dynamical systems. This paper presents a hybrid control strategy called Neuro-Fuzzy Sliding Mode Control (NFSMC) based on the Brushless Doubly fed Induction Generator (BDFIG). This replaces the sliding surfa...
متن کاملDynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis
Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...
متن کامل